Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diaqua[5-(2-pyridyl)tetrazolato- $\kappa^2 N^1 N^5$ | manganese (II)

Xiao-Chun Wen

Ordered Matter Science Research Centre, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: fudavid88@yahoo.com.cn

Received 12 April 2008; accepted 13 April 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.028; wR factor = 0.072; data-to-parameter ratio = 15.7.

The title compound, $[Mn(C_6H_4N_5)_2(H_2O)_2]$, was synthesized by the hydrothermal reaction of $Mn(NO_3)_2$ with picolinonitrile in the presence of NaN₃. The Mn atom lies on an inversion centre. The distorted octahedral Mn environment contains two planar trans-related N,N'-chelating 5-(2-pyridyl)tetrazolate ligands in the equatorial plane and two axial water molecules. O-H···N hydrogen bonds generate an infinite three-dimensional network.

Related literature

For the chemisty of tetrazole, see: Arp et al. (2000); Dunica et al. (1991); Wang et al. (2005); Wittenberger & Donner (1993).

Experimental

Crystal data

$[Mn(C_6H_4N_5)_2(H_2O)_2]$	
$M_r = 383.26$	
Monoclinic, $P2_1/n$	
a = 6.185 (3) Å	
b = 12.110 (7) Å	
c = 10.615 (5) Å	
$\beta = 106.597 \ (12)^{\circ}$	

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.638, T_{\max} = 0.695$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ 115 parameters $wR(F^2) = 0.071$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^-$ S = 1.10 $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$ 1803 reflections

V = 761.9 (7) Å³

Mo $K\alpha$ radiation $\mu = 0.90 \text{ mm}^{-3}$

 $0.5 \times 0.5 \times 0.4$ mm

7656 measured reflections

1803 independent reflections

1660 reflections with $I > 2\sigma(I)$

T = 293 (2) K

 $R_{\rm int} = 0.021$

Z = 2

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H2W\cdots N3^{i}$	0.85	2.03	2.864 (2)	169
$O1W - H1W \cdot \cdot \cdot N5^{ii}$	0.86	1.93	2.788 (2)	175

Symmetry codes: (i) x + 1, y, z; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP3 (Farrugia, 1997) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2338).

References

Arp, H. P. H., Decken, A., Passmore, J. & Wood, D. J. (2000). Inorg. Chem. 39, 1840-1848

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Dunica, J. V., Pierce, M. E. & Santella, J. B. III (1991). J. Org. Chem. 56, 2395-2400

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.

Wittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem. 58, 4139-4141.

supplementary materials

Acta Cryst. (2008). E64, m768 [doi:10.1107/S1600536808010106]

Diaqua[5-(2-pyridyl)tetrazolato- $\kappa^2 N^1$, N^5]manganese(II)

X.-C. Wen

Comment

The tetrazole functional group has found a wide range of applications in coordination chemistry as ligands, in medicinal chemistry as a metabolically stable surrogate for a carboxylic acid group, and in materials science as high density energy materials(Wang *et al.*, 2005; Dunica *et al.*, 1991; Wittenberger & Donner, 1993). We report here the crystal structure of the title compound, 5-(2-pyridyl)tetrazolate-Manganese(II) dihydrate.

The Mn atom lies on an inversion centre. The distorted octahedral Mn environment contains two planar *trans*-related *N*,*N*-chelating 5-(2-pyridyl)tetrazolate ligands in the equatorial plane and two water molecules ligands. The pyridine and tetrazole rings are nearly coplanar and are twisted from each other by a dihedral angle of only 4.02 (0.09) °(Fig.1). The bond distances and bond angles of the tetrazole rings are in the usual ranges (Wang *et al.*, 2005; *Arp et al.*, 2000).

The O atoms from water molecules are involved in intermolecular hydrogen bonds building up an infinite three-dimensional network(Table 1, Fig. 2).

Experimental

A mixture of picolinonitrile (0.2 mmol), NaN₃ (0.4 mmol), Mn(NO₃)₂(0.15 mmol) ethanol (1 ml) and a few drops of water sealed in a glass tube was maintained at 120 °C. Yellow block crystals suitable for X-ray analysis were obtained after 3 days.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.49 (2)Å) with $U_{iso}(H) = 1.5U_{eq}(O)$. In the last stage of refinement they were treated as riding on the O atom.

Figures

Fig. 1. Molecular view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code : (i) 1-x, 1-y, 1-z]

Fig. 2. The crystal packing of the title compound viewed along the *a* axis showing the three dimensionnal hydrogen bondings network (dashed line). Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

$Diaqua[5-(2-pyridyl)tetrazolato-\kappa^2 N^1, N^5]manganese(II)$

$[Mn(C_6H_4N_5)_2(H_2O)_2]$	$F_{000} = 390$
$M_r = 383.26$	$D_{\rm x} = 1.671 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2090 reflections
a = 6.185 (3) Å	$\theta = 3.8 - 27.5^{\circ}$
b = 12.110 (7) Å	$\mu = 0.90 \text{ mm}^{-1}$
c = 10.615 (5) Å	T = 293 (2) K
$\beta = 106.597 \ (12)^{\circ}$	Block, yellow
$V = 761.9(7) \text{ Å}^3$	$0.5\times0.5\times0.4~mm$
Z = 2	

Data collection

Rigaku Mercury2 (2x2 bin mode) diffractometer	1803 independent reflections
Radiation source: fine-focus sealed tube	1660 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{max} = 27.9^{\circ}$
T = 293(2) K	$\theta_{\min} = 2.6^{\circ}$
ω scans	$h = -8 \rightarrow 8$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -15 \rightarrow 15$
$T_{\min} = 0.638, \ T_{\max} = 0.695$	$l = -13 \rightarrow 13$
7656 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.028$	H-atom parameters constrained

$wR(F^2) = 0.071$	$w = 1/[\sigma^2(F_o^2) + (0.0346P)^2 + 0.2477P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.11	$(\Delta/\sigma)_{\text{max}} = 0.001$
1803 reflections	$\Delta \rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$
115 parameters	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods Extinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

F 1		1.	1 .	• ,				. 1.	1 .	,	182	ζ.
Fractional	atomic	coordinates	and i	sotron	IC OF P	auivalent	' isotron	1C d1S	nlacement	narameters	IA^{-}	1
1 / 00011011011	aronne	coordinates	control t	sonop		9000000000000	isonop	ie ans	pracement	parameters	1.1	/

	x	у	Z		$U_{\rm iso}$ */ $U_{\rm eq}$	
C1	0.2334 (2)	0.69220	(11) 0.354	475 (13)	0.0241 (3)	
C2	0.4533 (2)	0.74376	(11) 0.414	494 (13)	0.0244 (3)	
C3	0.4930 (3)	0.85522	(12) 0.40	133 (15)	0.0344 (3)	
Н3	0.3799	0.9008	0.35	11	0.041*	
C4	0.7043 (3)	0.89713	(13) 0.464	408 (17)	0.0412 (4)	
H4	0.7349	0.9717	0.45	59	0.049*	
C5	0.8696 (3)	0.82755	(14) 0.53	750 (16)	0.0393 (4)	
Н5	1.0121	0.8544	0.58	14	0.047*	
C6	0.8179 (2)	0.71703	(13) 0.54	410 (15)	0.0325 (3)	
H6	0.9299	0.6698	0.592	21	0.039*	
Mn1	0.5000	0.5000	0.50	00	0.02576 (11)	
N1	0.61452 (19)	0.67490	(9) 0.484	475 (11)	0.0255 (2)	
N2	0.19348 (18)	0.58625	(9) 0.374	478 (12)	0.0275 (2)	
N3	-0.0219 (2)	0.56898	(11) 0.304	475 (13)	0.0338 (3)	
N4	-0.1061 (2)	0.66105	(11) 0.24	559 (13)	0.0368 (3)	
N5	0.0515 (2)	0.74084	(10) 0.27	584 (12)	0.0318 (3)	
O1W	0.58488 (19)	0.45145	(9) 0.32	0.32058 (11) 0.0393 (3)		
H1W	0.5510	0.3858	0.29)5	0.059*	
H2W	0.7096	0.4775	0.31	51	0.059*	
Atomic displ	acement parameters	(\AA^2)				
-	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0229 (6)	0.0215 (6)	0.0268 (6)	0.0016 (5)	0.0055 (5)	0.0021 (5)
C2	0.0237 (6)	0.0221 (6)	0.0267 (6)	-0.0007(5)	0.0059 (5)	0.0014 (5)

supplementary materials

C3	0.0350 (7)	0.0238 (7)	0.0409 (8)	-0.0016 (6)	0.0050 (6)	0.0051 (6)
C4	0.0445 (9)	0.0267 (7)	0.0491 (9)	-0.0124 (6)	0.0082 (7)	0.0013 (6)
C5	0.0299 (7)	0.0422 (9)	0.0407 (8)	-0.0135 (6)	0.0019 (6)	-0.0014 (7)
C6	0.0243 (6)	0.0366 (8)	0.0327 (7)	-0.0011 (6)	0.0020 (5)	0.0024 (6)
Mn1	0.02613 (16)	0.01760 (16)	0.03133 (17)	0.00182 (10)	0.00463 (12)	0.00246 (10)
N1	0.0235 (5)	0.0237 (5)	0.0277 (5)	0.0000 (4)	0.0047 (4)	0.0021 (4)
N2	0.0222 (5)	0.0227 (6)	0.0342 (6)	-0.0018 (4)	0.0026 (5)	0.0001 (4)
N3	0.0239 (6)	0.0332 (7)	0.0400 (7)	-0.0042 (5)	0.0023 (5)	-0.0009 (5)
N4	0.0246 (6)	0.0402 (7)	0.0407 (7)	-0.0016 (5)	0.0012 (5)	0.0044 (6)
N5	0.0240 (6)	0.0316 (6)	0.0363 (6)	0.0023 (5)	0.0029 (5)	0.0075 (5)
O1W	0.0422 (6)	0.0340 (6)	0.0472 (6)	-0.0123 (5)	0.0213 (5)	-0.0121 (5)

Geometric parameters (Å, °)

C1—N5	1.3325 (17)	С6—Н6	0.9300
C1—N2	1.3350 (18)	Mn1—O1W ⁱ	2.1954 (14)
C1—C2	1.4670 (19)	Mn1—O1W	2.1954 (14)
C2—N1	1.3478 (17)	Mn1—N2 ⁱ	2.2388 (14)
C2—C3	1.387 (2)	Mn1—N2	2.2388 (14)
C3—C4	1.383 (2)	Mn1—N1 ⁱ	2.2538 (16)
С3—Н3	0.9300	Mn1—N1	2.2538 (16)
C4—C5	1.381 (2)	N2—N3	1.3438 (17)
C4—H4	0.9300	N3—N4	1.3122 (19)
C5—C6	1.382 (2)	N4—N5	1.3449 (18)
С5—Н5	0.9300	O1W—H1W	0.8597
C6—N1	1.3367 (18)	O1W—H2W	0.8507
N5-C1-N2	111.33 (12)	N2 ⁱ —Mn1—N2	180.0
N5—C1—C2	126.65 (12)	O1W ⁱ —Mn1—N1 ⁱ	91.80 (5)
N2—C1—C2	122.03 (11)	O1W—Mn1—N1 ⁱ	88.20 (5)
N1—C2—C3	122.30 (13)	N2 ⁱ —Mn1—N1 ⁱ	75.47 (5)
N1—C2—C1	115.11 (12)	N2—Mn1—N1 ⁱ	104.53 (5)
C3—C2—C1	122.59 (12)	O1W ⁱ —Mn1—N1	88.20 (5)
C4—C3—C2	118.56 (14)	O1W—Mn1—N1	91.80 (5)
С4—С3—Н3	120.7	N2 ⁱ —Mn1—N1	104.53 (5)
С2—С3—Н3	120.7	N2—Mn1—N1	75.47 (5)
C5—C4—C3	119.57 (14)	N1 ⁱ —Mn1—N1	180.0
С5—С4—Н4	120.2	C6—N1—C2	118.14 (12)
C3—C4—H4	120.2	C6—N1—Mn1	126.70 (10)
C4—C5—C6	118.32 (14)	C2—N1—Mn1	115.00 (9)
С4—С5—Н5	120.8	C1—N2—N3	105.11 (11)
С6—С5—Н5	120.8	C1—N2—Mn1	112.29 (9)
N1—C6—C5	123.09 (14)	N3—N2—Mn1	142.51 (9)
N1—C6—H6	118.5	N4—N3—N2	109.13 (12)
С5—С6—Н6	118.5	N3—N4—N5	109.55 (12)
O1W ⁱ —Mn1—O1W	180.0	C1—N5—N4	104.88 (12)
O1W ⁱ —Mn1—N2 ⁱ	88.95 (5)	Mn1—O1W—H1W	118.4

O1W—Mn1—N2 ⁱ	91.05 (5)	Mn1—O1W—H2W		114.0				
O1W ⁱ —Mn1—N2	91.05 (5)	H1W—O1W—H2W	11	6.5				
O1W—Mn1—N2	88.95 (5)							
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$.								
Hydrogen-bond geometry (Å, °)								
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A				
O1W—H2W····N3 ⁱⁱ	0.85	2.03	2.864 (2)	169				
O1W—H1W…N5 ⁱⁱⁱ	0.86	1.93	2.788 (2)	175				
Symmetry codes: (ii) $x+1$, y , z ; (iii) $-x+1/2$, $y-1/2$, $-z+1/2$.								

